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Artificial Intelligence has been
inspired by models of the brain

 Neural Networks
* Deep Convolution
 Reward Reinforcement
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The Free Energy Principle
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“A LOGICAL CALCULUS OF IDEAS
IMMANENT IN NERVOUS ACTIVITY”

1943, McCullough & Pitts. 1958 The Perceptron was
implemented by Frank Rosenblatt, funded by the
Office of Naval Research.

July 13, 1958
Electronic 'Brain’ Teaches Itself

The Navy last week demonstrated the embryo of an electronic
computer named the Perceptron which, when completed in about a
year, is expected to be the first non-living mechanism able to
"perceive, recognize and identify its surroundings without human
training Or CONtrol." VIEW FULL ARTICLE IN TIMESMACHINE »

The New York Times Archives
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Neumann Architecture
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Chatbot

Welcome to

EEEEEE LL 11D 222222  AAAAA
EE e i1 ZZ A
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EEEEEE LLLLLL 111D ZZ2zz2 AL AR

El1za 15 & sock Rogerian psychotherapist.
The original prograe was described by Joseph Welzenbaus In 1966.
This isplesentation by Norbert Landsteiner 2005.

ELIZA:
YOou:
ELIZA:
You:
ELIZA:
YOU:
ELIZA:

You:
ELIZA:
You:
ELIZA:
YOou:

1s something troubling you ?

Men are all alike.

What 1s the comection, do you suppose 7

They're always bugging us sbout something or other.
Can you think of a specific exosple ?

Well, ay boyfriend made me come here.

Is it important to you that your boyfriend made you cose here ?
He says 1'm depressed muxh of the tise,

1 aa sorry 10 hear that you are depressed.

It's true. I om .

Can you explain what sade you unhappy 7
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Eliza 15 & sock Rogerian psychotherapist.
The original progras was described by Joseph Welzenbaus In 1966,
This ispleaentation by Norbert Landsteiner 2005,

Robotics
& Cybernetics

ELIZA: 1s something trowbling you ?

YOU: Men are oll alike,

ELIZA: What 1s the comection, d0 you suppose 7

YOU: They're always bugging us about sosething or other.
ELIZA: Can you think of a specific expsple ?

YOU: Well, ay boyfriend sacde ae cone here,

ELIZA: 1s it important to you that your boyfriend sade you cose here ?
YOU: He says ['m depressed much of the tise,

ELIZA: 1 aa sorry 10 hear that you are depressed.

YOU: it's true. | aa unhappy.

ELQIJZA: Coan you explain what sace you unhappy 7

YOU:
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Hopfield Net
(1982)
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ML DOMINATES Al

Backprop (the chain rule)

Bigger Models - 8 layers

Compute

Data — Supervised learning

AlphaGo Zero — trained using RL
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GENERATIVE PRE-TRAINED
TRANSFORMERS: CLOZE PROBABILITY
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Of the Next Word (prediction)

Convolutional neural network
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GENERATIVE PRE-TRAINED
TRANSFORMERS: CLOZE PROBABILITY

The lawyer feared
her client was

Classification

Of the Next Word (prediction)

Convolutional neural network

Guilty

(0.73,
lying 0.14,
crazy, 0.03,
sick, 0.02)




GENERATIVE PRE-TRAINED

TRANSFORMERS

Gina misplaced her
phone at her
grandparents. [t wasn’t
anywhere in the living
room. She realized she
was in the car before.
She grabbed her dad’s
keys and ran outside.

GPT-1 (2018), 117 million parameters: ‘We
evaluate on the Story Cloze Test [40], our model
again outperforms the previous best results by
significant margins - up to 8.9%

Classification

Of the Next Word (prediction)

Convolutional neural network

They
lawyer

feared her
client was

RIGHT ENDING

SHE FOUND HER
PHONE IN THE
CAR.

WRONG ENDING

SHE DIDN'T WANT
HER PHONE
ANYMORE.



Introducing ChatGPT x @ Newchat

&< - C & chat.openai.com/chat

+ New chat A We're experiencing exceptionally high demand. Please hang tight
as we work on scaling our systems. )

[3 New chat

ChatGPT

0 % A

Examples Capabilities Limitations
"Explain quantum computing in Remembers what user said May occasionally generate
simple terms" > earlier in the conversation incorrect information
"Got any creative ideas for a 10 Allows user to provide follow- May occasionally produce
year old's birthday?" - up corrections harmful instructions or biased
content
"How do | make an HTTP Trained to decline inappropriate
request in Javascript?" > requests Limited knowledge of world and

events after 2021

Clear conversations
Upgrade to Plus
Dark mode

Updates & FAQ <

Log out ChatGPT Mar 14 Version. Free Research Preview. Our goal is to make Al systems more natural and safe to interact with. Your feedback will help us improve.

1-s2.0-S089360....pdf A

Show all
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Countries with M Number of MRIu  MRI units (per 1

Countries Rl units Regions Population (mil) nits mil)
212 160 6 7,674M 51,498 0.711
HEALTHCARE )
. 37 20

20
11

15 .
10

26
69

MRI units ranges
B More than 30
I Between 15 and 30 (inc)
"] Between 10 and 15 (inc)

(] Between 7.5 and 10 (inc)
Between 5and 7.5 (inc) |




With a U-NET & £60k Machine

HEALTHCARE\\‘ e

2\ 'l%‘ ACCESSIBLE POINT OF
\Colge | CARE BRAIN IMAGING

With a £3M Machine



Artificial Intelligence has been
inspired by models of the brain

 Neural Networks
* Deep Convolution
 Reward Reinforcement




“Normative models describe how an
optimal system would work given the
goals. They describe ‘what’ the brain is

trying to do.”

“Process models are about the
mechanisms, thus describing ‘how’ it is
done.”

Flageletal. 2016
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Variational Message Passing
In late 2017, a group led by Rosalyn To Minimize Free Energy

Moran, a neuroscientist and
engineer at King’s College London,
pitted two Al players against one

Minimize Free Energy

another in a version of the 3D
shooter game Doom. The goal was
to compare an agent driven by
active inference to one driven by
reward-maximization.
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BUILT FROM THE INSIDE OUT

WHAT IS A BRAIN TRYING TO DO?

HOW WOULD IT FIND ITS OWN DATA,
AND GENERATE ITS OWN MODEL?
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A Non-Equilibrium Steady State
The Fokker-Planck equation




Brain is an Inference engine

Hypothesis generator






Inference

Real world

The free energy principle is

a formal statement that explains how living
and non-living systems remain in non-
equilibrium steady-states by restricting
themselves to a limited number of states

Biological agents perceive and act in order to
minimize long term surprise. It can predict its
world. To do so an agent could model the
world and try to predict the causes of
sensations.

Friston, A Theory of Cortical Responses 2006

Sensory Data, y

The world in my brain



Inference

Real world

— '—!m.wﬁ ...

. £
Wt

‘AA L

‘% 2 'N"r*" e
8 ‘i; B = !: ‘_!{gi '!' 3 i:

WIDIII lll ;i X , b5

.u. ¥ ® v

{_, _' ' . ! L
-“-—‘ - - -

ok
/

Sensory Data, y

(t+1)

cccccccccccc

The world in my brain
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And Act

Real world (p) The world in my brain (q)

ER

action, a

Sensory Data, y

Sensory Data, y

Sensory Data, y
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Revisiting MNIST, Why do humans ‘see’? ..... How do humans ‘see’?

A meta-Bayesian model of intentional visual search Cullen, Monney, Mirza & Moran. 2020.
Contextual perception under Active Inference, Mirza, Cullen, Parr, Shergill, Moran. 2021



Revisiting MNIST

Vision is Active, Top-down, Sparse, Deliberative, Predictive



Action & Belief Under Active Inference

~

y R(y,x,) y R(¥,%,) o(loc), E,

g

25 -
“n
T,
T3
- The agent's visual expectation Posterior expectation about the
Hidden Stimulus 2gfneur|\:]esd portlon of about the glObal & local scene target location ’61_ & Ascending
generated from the prior posterior expectation about the

network. target digit 0y,.



The crucial understanding in the difference
between Bayesian theory of brain function
and the Free Energy Principle

Biological systems are active, they change
they move, they interact with their _ .
environment "

The inference (model, prediction) aboyt the
external world is not static but active

Two essential implications for intelligence in
organs, organisms and the brain
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